

nVent ERICO Cu-Bond Direttore rotondo

Da decenni, nVent ERICO presenta sul mercato picchetti di terra legati a rame di alta qualità. nVent ERICO ha adottato lo stesso concetto di picchetto di terra e lo ha trasformato in un nuovo conduttore di messa a terra. Nella parte centrale del conduttore tondo ERICO CU-BOND vi è acciaio a basso contenuto di acciaio al carbonio, per una migliore flessibilità sul campo. La parte centrale in acciaio è placcata in nickel, quindi elettroplaccata con un rivestimento di rame. Questo processo di elettroplaccatura consente di garantire una connessione molecolare di lunga durata tra lo strato di rame e l'acciaio.

La parte centrale in acciaio del conduttore offre vantaggi antifurto, rendendo il conduttore difficile da tagliare con strumenti manuali. Grazie a questa parte centrale in acciaio, il conduttore tondo nVent ERICO Cu-Bond rappresenta un'alternativa conveniente ai conduttori realizzati completamente in rame. La superficie in rame del conduttore garantisce elevata conduttività e proprietà anticorrosive.

Sopra la superficie del terreno, le esclusive proprietà del conduttore tondo nVent ERICO Cu-Bond lo rendono ideale per il posizionamento orizzontale e verticale. Il conduttore è adatto come protezione contro i fulmini se applicato in conformità con lo standard IEC 62305-3 Edizione 2.0.

Nel settore dei servizi di pubblica utilità, il prodotto può essere utilizzato come conduttore di canale discendente o come parte di un kit di collegamento in relazione a recinzioni per sottostazioni o colonne di messa a terra per strumentazioni collegate alla griglia. Nelle applicazioni del settore telecomunicazioni, il prodotto può essere utilizzato per connettere strumentazioni a terra, una colonna (canale discendente) per torri di trasmissione o come conduttore di messa a terra per la griglia di collegamento di un data center. È inoltre adatto ad applicazioni per rotaie, quali conduttori di collegamento lungo i binari e conduttori di correnti vaganti, kit di messa a terra per unità posizionate lungo i binari, alimentazione per trazione elettrica, nonché in relazione a unità di sottostazioni, pensiline lungo la strada e per unità relative ad antenne di comunicazione.

Sotto la superficie del terreno, i conduttori tondi nVent ERICO Cu-Bond sono ideali come conduttori di messa a terra e di collegamento in ambiti in cui possono verificarsi furti di rame. Possono essere utilizzati come conduttori di griglia di messa a terra o elettrodi per torri di

telecomunicazioni wireless, per la distribuzione dell'alimentazione e per la messa a terra di linee di trasmissione in sottostazioni di servizi di pubblica utilità, in parchi solari montati a terra su larga scala, in infrastrutture petrolchimiche e di estrazione mineraria nell'ambito di strutture industriali e applicazioni ferroviarie. I conduttori possono essere utilizzati come conduttori di messa a terra di interconnessione tra torri eoliche o come griglie di messa a terra alla base di una torre eolica.

CERTIFICAZIONI

CARATTERISTICHE

La parte centrale in acciaio "antifurto" è difficile da tagliare con strumenti manuali

Economico: il rame collegato a una parte centrale in acciaio riduce al minimo la quantità di rame presente nel cavo

Resistenza alla corrosione di livello superiore: durata media di 30-40 anni nella maggior parte delle condizioni di terreno

Il rivestimento del rame non si rompe o danneggia a seguito della piegatura del conduttore

Elevata resistenza alla corrosione e percorso a ridotta resistenza verso terra

Il conduttore tondo nVent ERICO Cu-Bond è contrassegnato ogni metro (3,28') per garantire una facile misurazione sul campo

Soddisfa i requisti degli standard IEC® 62305-3 Edizione 2 e IEC/EN 62561-2 per le applicazioni di protezione contro i

I conduttori tondi nVent ERICO Cu-Bond sono certificati UL in base allo standard IEC® 62561-2

SPECIFICHE

Spessore placcatura: 254µm

Materiale: Acciaio legato al rame

Conforme a.: EN IEC® 62305-3 Edizione 2;EN IEC® 62561-2;EN IEC 62561-2

Table 1/2							
Codice a catalogo	Diametro (Ø)	Lunghezza (L)	Equivalenza capacità di fusione	Codice conduttore nVent ERICO Cadweld	Peso unità	Dettagli della certificazione	
CBSC8	8 mm	100m	25mm²	Т1	39 kg	EN IEC® 61561-2	
CBSC10	10 mm	100m	35mm²	T2	62.7 kg	EN IEC® 61561-2	

Codice a catalogo	Diametro (Ø)	Lunghezza (L)	Equivalenza capacità di fusione	Codice conduttore nVent ERICO Cadweld	Peso unità	Dettagli della certificazione
CBSC14	14.2 mm	100m	70mm²	Т4	125 kg	EN IEC® 61561-2, UL® 467, CSA C22.1 N. 41
CBSC18	17.7 mm	100m	95mm²	Т6	192.2 kg	EN IEC® 61561-2, UL® 467, CSA C22.1 N. 41

Table 2/2				
Codice a catalogo	Certificazioni			
CBSC8	UL (IEC)			
CBSC10	UL (IEC)			
CBSC14	cUL, UL, UL (IEC)			
CBSC18	cUL, UL, UL (IEC)			

INFORMAZIONI DI PRODOTTO AGGIUNTIVE

Le misurazioni di lunghezza della resistenza per unità vengono effettuate in $m\Omega/m$, con CBSC rispetto alla misurazione AWG/unità metriche.

Lo standard IEEE® 837 (Allegato C) fornisce un metodo per il calcolo della corrente nominale dei conduttori. Questo grafico rappresenta un riferimento dei calcoli effettuati per i conduttori in acciaio legato a rame, in conformità con lo standard IEEE 837. Le presenti informazioni sono solo a titolo di riferimento.

Confronto dimensioni fisiche dei conduttori						
Dimensioni conduttore	Diametro approssimativo	Sezione trasversale				
25 mm²	6,76 mm	-				
35 mm²	7,65 mm	-				
CBSC8	8,00 mm	50,27 mm²				
50 mm²	8,89 mm	-				
CBSC10	10,00 mm	78,52 mm²				
70 mm²	10,69 mm	-				
95 mm²	12,47 mm	-				
CBSC13	13,20 mm	138,07 mm²				
CBSC14	14,20 mm	158,90 mm²				
120 mm²	14,22 mm	-				
CBSC16	15,70 mm	199,84 mm²				
150 mm²	15,75 mm	-				
185 mm²	17,65 mm	-				
CBSC18	17,70 mm	243,27 mm²				

Confronto della conduttività						
Codice articolo	AWG (Ω/km)	Resistenza CBSC per Confronto della lunghezza	$mm^2 (\Omega/km)$	Resistenza CBSC per Confronto della lunghezza		
CDCC10	1/0 AWG	118,52%	50 mm²	110,82%		
CBSC18	2 AWG	74,54%	35 mm²	77,57%		
000016	2 AWG	102,20%	35 mm²	106,36%		
CBSC16 4 AWG		64,27%	25 mm²	75,97%		
CBSC14 2 AWG 4 AWG	2 AWG	137,78%	25 mm²	102,42%		
	4 AWG	86,65%	16 mm²	65,55%		
000010	2 AWG	134,46%	25 mm²	99,95%		
CBSC13	4 AWG	84,56%	16 mm²	63,97%		
000010	4 AWG	132,25%	16 mm²	100,05%		
CBSC10	6 AWG	83,17%	10 mm²	62,53%		
CBSC8	6 AWG	107,85%	16 mm²	129,73%		
	8 AWG	67,83%	10 mm²	81,08%		

Corrente di fusione Irms (kA) - IEEE® 837 Allegato C							
Tipo di conduttore Legato a rame, nucleo in acciaio, barra filettataa		CBSC8	CBSC10	CBSC13	CBSC14	CBSC16	CBSC18
Sezione trasversale del conduttore in mm2	А	50.265	78.52	138.07	158.903	199.84	243.27
Temperatura iniziale del conduttore in °C	Та	40	40	40	40	40	40
Durata del flusso di corrente in secondi	tc	2	2	2	2	2	2
Temperatura massima consentita °C		1084	1084	1084	1084	1084	1084
Coefficiente termico di resistività alla temperatura di riferimento Tr	ar	0.00378	0.00378	0.00378	0.00378	0.00378	0.00378
Resistività del conduttore di terra alla temperatura di riferimento Tr in m&-cm	rr	8.621	8.621	8.621	8.621	8.621	8.621
1/a0 oppure (1/ar) – Tr in °C	K0	245	245	245	245	245	245
Fattore di capacità termica in Joules/cm3/°C	TCAP	3.846	3.846	3.846	3.846	3.846	3.846
Conduttività del materiale	%	24.5	20.4	18.8	15.9	16.3	17.7
	ß	84.73	84.73	84.73	84.73	84.73	84.73
Calcolo della corrente di fusione	I	4.79	7.48	13.16	15.15	19.05	23.19
Calcolo della corrente di fusione	190%	4.31	6.74	11.84	13.63	17.14	20.87
	180%	3.83	5.99	10.53	12.12	15.24	18.55

SCHEMI

AVVERTIMENTO

I prodotti nVent devono essere installati e utilizzati solo come indicato nelle schede istruzioni e nei materiali di formazione di nVent. Le schede istruzioni sono disponibili su www.nvent.com e presso il vostro rappresentante del servizio clienti nVent. Un'installazione scorretta, un uso improprio, un'applicazione errata o qualsiasi altro mancato rispetto completo delle istruzioni e degli avvertimenti di nVent può causare malfunzionamenti del prodotto, danni alla proprietà, gravi lesioni personali e morte e/o annullare la vostra garanzia.

Nord America

+1.800.753.9221 Opzione 1 – Assistenza clienti Opzione 2 – Assistenza tecnica

Europa

Paesi Bassi: +31 800-0200135 Francia: +33 800 901 793

Europa

Germania: 800 1890272 altri paesi: +31 13 5835404

APAC

Shanghai: + 86 21 2412 1618/19 Sydney: +61 2 9751 8500

Il nostro straordinario portafoglio di marchi:

CADDY ERICO HOFFMAN ILSCO SCHROFF TRACHTE