

Conductor redondo nVent ERICO Cu-Bond

Durante décadas, nVent ERICO ha proporcionado al mercado picas de puesta a tierra cobreadas de alta calidad. nVent ERICO ha tomado el mismo concepto en las picas de puesta a tierra y lo ha convertido en un conductor de tierra nuevo y revolucionario. El núcleo del conductor redondo Cu-Bond nVent ERICO está fabricado con acero al carbono de grado bajo que mejora su flexibilidad en el campo. El núcleo de acero está recubierto de níquel y luego galvanizado con un revestimiento de cobre. Este proceso de galvanizado contribuye a garantizar el enlace molecular entre la capa de cobre y el acero.

El núcleo de acero del conductor proporciona beneficios que permiten evitar los robos, ya que el conductor es difícil de cortar usando herramientas manuales. Con este núcleo de acero, el conductor circular nVent ERICO Cu-Bond es una alternativa rentable a los conductores fabricados con un 100% de cobre. La superficie de cobre del conductor proporciona alta conductividad y propiedades de resistencia a la corrosión.

Por encima del nivel del suelo, las propiedades únicas del conductor redondo nVent ERICO Cu-Bond hacen que resulte ideal para ubicarlo en posición vertical u horizontal. El conductor es adecuado como protección contra rayos cuando se aplica de acuerdo con la norma IEC 62305-3 Edición 2.0.

En la industria de los servicios, el producto se puede usar como conductor de trazadores descendentes de distribución o como parte de un kit de unión para vallas de subestaciones o para risers de conexión a tierra de equipos de vuelta a la malla. En aplicaciones de telecomunicaciones, el producto se puede usar para conectar la conexión a tierra del equipo con la malla de conexión a tierra, como un tubo de subida (trazador descendente) para torres, o como un conductor de conexión a tierra para enlace de mallas de centros de datos. También es apto para aplicaciones de raíles como conductores de enlace de equipos en tierra y conductores de corrientes de fuga, kits de conexión a tierra para equipos en tierra, potencia de tracción eléctrica, tanto en subestaciones como en refugios instalados al borde de caminos y equipos de antenas de comunicación.

Por debajo del nivel del suelo, los conductores redondos nVent ERICO Cu-Bond son ideales como conductores de conexión a tierra y conductores de unión en lugares donde se puede producir el robo de cobre. Pueden usarse como

conductores de mallas de conexión a tierra soterrados o como electrodos para torres de telecomunicaciones inalámbricas, para distribución de potencia y conexión a tierra de la transmisión en subestaciones de servicio, parques solares montados a gran escala, infraestructura petroquímica y de minería en instalaciones industriales y aplicaciones de ferrocarriles. También se puede usar como conductor de conexión a tierra de interconexión entre torres eólicas o como malla de conexión a tierra en la base de una torre eólica.

CERTIFICACIONES

CARACTERÍSTICAS

Antirrobo; el núcleo de acero es difícil de cortar con herramientas manuales

Rentable; el cobre adherido al núcleo de acero minimiza la cantidad de cobre dentro del cable

Resistencia superior a la corrosión; la vida útil de la aplicación es, por lo general, de entre 30 y 40 años en la mayoría de las condiciones del suelo

El revestimiento de cobre no se resquebraja ni se rompe cuando se dobla el conductor

Alta resistencia a la corrosión y ruta de baja resistencia para la conexión a tierra

El conductor circular nVent ERICO Cu-Bond está marcado en cada metro (3,28') para facilitar la medición en campo

Cumple con los requisitos de la Edición 2 de IEC® 62305-3 y de IEC/EN 62561-2 para aplicaciones de protección contra rayos

Los conductores circulares nVent ERICO Cu-Bond cuentan con certificación UL según IEC® 62561-2

ESPECIFICACIONES

Espesor del recubrimiento: 254µm

Material: Cobre-bonded Steel

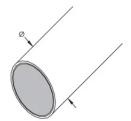
Table 1/2							
Número de catálogo	De conformidad con	Diámetro (Ø)	Longitud (L)	Equivalencia de capacidad de fusión	Código de conductor Cadweld de nVent ERICO	Peso por unidad	
CBSC8	EN IEC® 62305-3 Edition 2, EN IEC® 62561-2, EN IEC 62561-2	8 mm	100m	25mm²	T1	39 kg	

Número de catálogo	Deconformidad con	Diámetro (Ø)	Longitud (L)	Equivalencia de capacidad de fusión	Código de conductor Cadweld de nVent ERICO	Peso porunidad
CBSC10	EN IEC® 62305-3 Edition 2, EN IEC® 62561-2, EN IEC 62561-2	10 mm	100m	35mm²	T2	62.7 kg
CBSC13	EN IEC® 62305-3 Edition 2, EN IEC® 62561-2, EN IEC 62561-2	13.2 mm	100m	50mm²	Т3	107.6 kg
CBSC14	EN IEC® 62305-3 Edition 2, EN IEC® 62561-2, EN IEC 62561-2	14.2 mm	100m	70mm²	Т4	125 kg
CBSC18	EN IEC® 62305-3 Edition 2, EN IEC® 62561-2, EN IEC 62561-2	17.7 mm	100m	95mm²	Т6	192.2 kg

Table 2/2					
Número de catálogo	Detalles de la certificación	Certificaciones			
CBSC8	EN IEC® 61561-2	UL (IEC)			
CBSC10	EN IEC® 61561-2	UL (IEC)			
CBSC13	EN IEC® 61561-2, UL® 467, CSA C22.1 No. 41	UL (IEC), cUL, UL			
CBSC14	EN IEC® 61561-2, UL® 467, CSA C22.1 No. 41	UL (IEC), cUL, UL			
CBSC18	EN IEC® 61561-2, UL® 467, CSA C22.1 No. 41	UL (IEC), cUL, UL			

DETALLES ADICIONALES DEL PRODUCTO

Resistencia por mediciones de longitud de unidad en $m\Omega/m$, CBSC comparada con AWG/Métrico.


La normativa IEEE® 837 (Anexo C) proporciona un método para calcular la corriente de fusión para los conductores. Este cuadro muestra una referencia de los cálculos para el conductor de acero ligado con cobre de acuerdo con la normativa IEEE 837. Esta información se suministra solo a modo de referencia.

Comparación del tamaño físico del conductor						
Tamaño de conductor	Diámetro aproximado	Sección transversal				
25 mm²	6,76 mm	-				
35 mm²	7,65 mm	-				
CBSC8	8,00 mm	50,27 mm²				
50 mm²	8,89 mm	-				
CBSC10	10,00 mm	78,52 mm²				
70 mm²	10,69 mm	-				
95 mm²	12,47 mm	-				
CBSC13	13,20 mm	138,07 mm²				
CBSC14	14,20 mm	158,90 mm²				
120 mm²	14,22 mm	-				
CBSC16	15,70 mm	199,84 mm²				
150 mm²	15,75 mm	-				
185 mm²	17,65 mm	-				
CBSC18	17,70 mm	243,27 mm²				

Comparación de conductividad						
Número de pieza	AWG (Ω/km)	Resistencia CBSC por Comparación de longitud	mm ² (Ω/km)	Resistencia CBSC por Comparación de longitud		
CBSC18	1/0 AWG	118,52 %	50 mm²	110,82 %		
	2 AWG	74,54 %	35 mm²	77,57 %		
000016	2 AWG	102,20 %	35 mm²	106,36 %		
CBSC16	4 AWG	64,27 %	25 mm²	75,97 %		
CBSC14	2 AWG	137,78 %	25 mm²	102,42 %		
	4 AWG	86,65 %	16 mm²	65,55 %		
000010	2 AWG	134,46 %	25 mm²	99,95 %		
CBSC13	4 AWG	84,56 %	16 mm²	63,97 %		
CBSC10	4 AWG	132,25 %	16 mm²	100,05 %		
	6 AWG	83,17 %	10 mm²	62,53 %		
CBSC8	6 AWG	107,85 %	16 mm²	129,73 %		
	8 AWG	67,83 %	10 mm²	81,08 %		

Corriente de fusible Irms (kA) - IEEE® 837 Anexo C							
Tipo de conductor Revestido con cobre electrolítico, núcleo de acero, varillaa		CBSC8	CBSC10	CBSC13	CBSC14	CBSC16	CBSC18
Sección transversal del conductor en mm2	А	50.265	78.52	138.07	158.903	199.84	243.27
Temperatura inicial del conductor en °C	Та	40	40	40	40	40	40
Tiempo de flujo de corriente en segundos	tc	2	2	2	2	2	2
Temperatura máxima permisible en °C	Tm	1084	1084	1084	1084	1084	1084
Coeficiente térmico de resistividad a temperatura de referencia Tr	ar	0.00378	0.00378	0.00378	0.00378	0.00378	0.00378
Resistividad del conductor de puesta a tierra a temperatura de referencia Tr en m&-cm	rr	8.621	8.621	8.621	8.621	8.621	8.621
1/a0 o (1/ar) - Tr in °C	K0	245	245	245	245	245	245
Factor de capacidad térmica en julios/cm3/°C	TCAP	3.846	3.846	3.846	3.846	3.846	3.846
Conductividad del material	%	24.5	20.4	18.8	15.9	16.3	17.7
	ß	84.73	84.73	84.73	84.73	84.73	84.73
Cálculo de la corriente de fusible	1	4.79	7.48	13.16	15.15	19.05	23.19
Calculo de la confiente de fusible	190 %	4.31	6.74	11.84	13.63	17.14	20.87
	180 %	3.83	5.99	10.53	12.12	15.24	18.55

DIAGRAMAS

ADVERTENCIA

Los productos nVent deben instalarse y usarse solo como se indica en las hojas de instrucciones y materiales de capacitación del producto nVent. Instruction sheets are available at www.nvent.com and from your nVent customer service representative. La instalación incorrecta, el mal uso, la aplicación incorrecta u otras fallas en el seguimiento completo de las instrucciones y advertencias de nVent pueden causar el mal funcionamiento del producto, daños a la propiedad, lesiones corporales graves y la muerte y/o anular la garantía.

 $^{\triangle}$ WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Norteamérica

+1.800.753.9221 Opción 1: Atención al

cliente

Opción 2: Soporte técnico

Europa

Países Bajos: +31 800-0200135

Francia:

+33 800 901 793

Europa

Alemania: 800 1890272 Otros países:

+31 13 5835404

Asia-Pacífico

Shanghái:

+86 21 2412 1618/19

Sídney:

+61 2 9751 8500

Nuestro gran portafolio de marcas:

CADDY ERICO HOFFMAN ILSCO SCHROFF TRACHTE

©2025 nVent. Todas las marcas y logotipos de nVent son propiedad de nVent Services GmbH o sus filiales, o se utilizan bajo su licencia. El resto de las marcas comerciales son propiedad de sus respectivos propietarios. nVent se reserva el derecho a cambiar las especificaciones sin previo aviso.

Este documento lo ha generado el sistema.