

Conductor trenzado aislado IBS/IBSB Advanced, libre de halógenos

Servicios públicos de energía

Los conductores trenzados aislados IBS/IBSB Advanced libre de halógenos son la solución ideal y están listos para instalarse como reemplazo de alambres flexibles y están diseñados específicamente para conexiones con todos los interruptores automáticos de caja moldeada, incluso los interruptores automáticos más compactos del mercado. Los conductores IBS/IBSB Advanced se conectan a los terminales de acceso delantero de los interruptores sin accesorios adicionales, como conectores angulares, separadores, conectores de terminales de anillo o extensores. Los conductores IBS/IBSB Advanced están disponibles en secciones transversales de 25 a 240 mm² (49,34 a 273,65 kcmil), longitudes de 230 a 1,030 mm (9,06" a 40,55") y 80 a 700 A.

Fabricados en una instalación automatizada de certificación ISO 9001, los conductores IBS/IBSB Advanced se forman al trenzar hilos de cobre electrolítico duradero para crear un conector de bajo voltaje de máxima flexibilidad que permite conexiones de potencia más compacta a los interruptores automáticos. Los conductores IBS/IBSB les permiten a los usuarios reducir el tamaño y el peso total de la instalación, lo cual mejora la flexibilidad del diseño y la estética del ensamblaje.

El proceso de fabricación exclusivo de palmas previamente perforadas hace que los conductores IBS/IBSB Advanced estén listos para conectarse. No es necesario comprar o instalar terminales, lo cual simplifica y agiliza las conexiones y elimina las conexiones defectuosas debido a la vibración o fatiga.

Los conductores IBS/IBSB Advanced son compatibles con la mayoría de los interruptores de circuito de caja moldeada de marca.

El aislamiento de tecnología avanzada está formado por un termoplástico libre de halógenos, de baja emisión de humo, de alta resistencia y es retardante de llamas.

Los conductores IBS/IBSB Advanced no generan gases corrosivos y producen una opacidad de baja emisión de humo relativa que cumple con las normas IEC 61034-2 y

UL 2885. La característica de baja emisión de humo mejora las condiciones de visibilidad para que las personas puedan localizar fácilmente la salida de emergencia y también para que los trabajadores de rescate evalúen una situación de emergencia. Los conductores IBS/IBSB Advanced representan una mayor seguridad para las personas, menos daño al equipo eléctrico y menos impacto en el ambiente.

La característica libre de halógenos facilita una reducción en la cantidad de humo tóxico. Los conductores planos IBS/IBSB Advanced no contienen halógenos, de acuerdo con IEC 60754-1 y UL 2885, lo cual minimiza la toxicidad y hace que el producto sea ideal para utilizar en espacios cerrados como centros de datos, raíl y otras instalaciones públicas como hospitales y escuelas. Esto también favorece el uso de los conductores IBS/IBSB Advanced en aplicaciones específicas como submarinos, cuadros de distribución y otros ambientes cerrados que requieren una solución de bajas emisiones.

Además de las características mencionadas anteriormente. los conductores IBS/IBSB Advanced cumplen con la norma de prueba UL 94-V0 y el ensayo de hilo incandescente de 960 °C. La parte retardante de llama de la prueba demuestra la característica autoextinguible. Esta característica superior de los conductores IBS/IBSB Advanced también se muestra en el Índice límite de oxígeno (Limiting Oxygen Index, LOI) al 30%. En caso de incendio, los conductores IBS/IBSB Advanced generan una cantidad limitada de humo, lo cual es menos dañino para el equipo eléctrico.

CERTIFICACIONES

CARACTERÍSTICAS

Es adecuado para todos los principales interruptores automáticos de caja moldeada

Resistente a la vibración, mejora la fiabilidad y el rendimiento

Aislado con material de alta resistencia, libre de halógenos, retardante de llamas y de baja emisión de humo

El cobre estañado ofrece una resistencia superior a la corrosión

Mejora la flexibilidad y la estética del ensamblaje

Instalación fácil y rápida

No se necesitan cortes, peladas, empalmes y troquelados adicionales

Palma integral sin terminales que reduce el material y el peso del ensamblaje

Conforms to NF EN 45545 obtaining an HL3 classification for chapters R22 and R23

Cuenta con certificación DNV GL® y Bureau para aplicaciones marinas y de altamar

El pequeño diámetro de alambre brinda la máxima flexibilidad

Es mucho más pequeño y más flexible que el cable comparable basado en la ampacidad

Mejor densidad de energía que el cable con menor relación de efecto superficial

Reduce el costo total de instalación

Cumple con RoHS

El cobre estañado permite conexiones con conductores de cobre o aluminio

A petición, se puede fabricar con otros colores (normalmente con funda naranja para la conexión de la batería)

ESPECIFICACIONES

Espesor del aislamiento: 1,8 mm Resistencia dieléctrica: 20 kV/mm Elongación del aislamiento: 500 %

Voltaje máx. de trabajo, UL 67: 600 V CA/CC

Max Working Voltage, IEC/UL 758: 1.000 VAC;1,500 VDC

Índice Libre de Halógenos: UL® 2885;IEC® 60754-1;IEC® 62821-1 Ínidice de Baja Emisión de Humos: IEC® 61034-2;ISO 5659-2;UL® 2885

Índice de Resistencia UV: UL® 2556;UL® 854;IEC® 60 364: Nivel AN3

Detalles de la certificación: UL® 67;UL® 758 Temperatura de trabajo: -50 a 115 °C

Table 1/3									
Número de catálogo	Número de artículo	Capacidad típica de la corriente de aplicación	Corriente pico de cortocircuito (lpk)	Ancho del conductor	Espesor del conductor	Α			
IBSBADV50-630	534411	250 A	30 kA	20 mm	2.8 mm	9 mm			
IBSBADV25-230	534400	160 A	14 kA	12 mm	2.8 mm	6.50 mm			

Table 2/3									
Número de catálogo	Número de artículo	В	С	D	Tamaño del orificio 1 (HS1)	Hole Size 2 (HS2)			
IBSBADV50-630	534411	11 mm	27 mm	8 mm	8.5 mm	10.5 mm			
IBSBADV25-230	534400	6.5 mm	18 mm	9 mm	6.5 mm	6.5 mm			

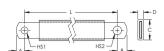
Table 3/3									
Número de catálogo	Número de artículo	Peso unitario							
IBSBADV50-630	534411	0.390 kg							
IBSBADV25-230	534400	0.080 kg							

ADDITIONAL PRODUCT DETAILS

 ΔT = Temperatura de los conductores: temperatura interna del panel.

Esta tabla indica el aumento de temperatura producido por la intensidad escogida en la sección dada. Este cálculo no tiene en cuenta la disipación de calor de la aparamenta.

IBSB Advanced Insulated Braided Conductor with a cross section of 240 mm² (473.65 kcmil) is constructed of red copper strands with tinned palms.


Distance between supports must not exceed 630 mm (17.8") according to IEC 61439-1.

Capacidades nominales de ampacidad máxima										
Sección transversal (mm²/kcmil)	ΔT 30 °C (A)	ΔT 40 °C (A)	ΔT 45 °C (A)	ΔT 50 °C (A)	ΔT 55 °C (A)	ΔT 60 °C (A)	ΔT 70 °C (A)	Coeficiente de corriente de 2 barras	Coeficiente de corriente de 3 barras	
25/49,34	116	134	142	150	157	164	177	1,6	2	
50/98,68	213	246	260	274	288	301	325	1,6	2	
70/138,15	226	261	277	291	306	319	345	1,6	2	
100/197,35	298	344	365	385	404	422	456	1,6	2	
120/236,82	363	419	444	468	491	513	554	1,6	2	
185/365,1	416	480	509	537	563	588	635	1,6	2	
240/473,65	556	642	681	718	753	786	849	1,6	2	

Capacidades nominales de ampacidad máxima										
Sección transversal (mm²/kcmil)	ΔT 30 °C (A)	ΔT 40 °C (A)	ΔT 45 °C (A)	ΔT 50 °C (A)	ΔT 55 °C (A)	ΔT 60 °C (A)	ΔT 70 °C (A)	Coeficiente de corriente de 2 barras	Coeficiente de corriente de 3 barras	
25/49.34 (IBSB)	116	134	142	150	157	164	177	1.6	2	
25/49.34 (IBS)	137	158	167	177	185	193	209	1.6	2	
50/98,68	213	246	260	274	288	301	325	1,6	2	
70/138,15	226	261	277	291	306	319	345	1,6	2	
100/197,35	298	344	365	385	404	422	456	1,6	2	
120/236,82	363	419	444	468	491	513	554	1,6	2	
185/365,1	416	480	509	537	563	588	635	1,6	2	
240/473,65	556	642	681	718	753	786	849	1,6	2	

Compatibilidad del interruptor de circuito										
Capacidad nominal de corriente del interruptor de circuito	ominal de orriente del 125/160 A nterruptor de		250 A		300 A	350 A	400 A	500 A	630 A	
N.º de pieza	IBSBADV25x	IBSADV25x	IBSBADV50x	IBSADV50x	IBSBADV70x	IBSBADV100x	IBSBADV120x	IBSBADV185x	IBSBADV240x	
Schneider Electric® Compact® (IEC)	NSA NG 125	NSX 100 NSX 160	NSX 250	NSX 250	NSX 400	NSX 400	NSX 400	NSX 630	NSX 630	
Square D® PowerPact® (UL)	Marco H	Marco J	Marco J	Marco J	Marco L	Marco L	Marco L	-	-	
ABB® Tmax® (IEC)	T1 T2 XT1 XT2	-	T3 XT3 XT4	T3 XT3 XT4	T4	T4	T5	Т5	T5	
ABB® Tmax® (UL)	T1 T2 XT1 XT2	Т3	T4 XT3 XT4	T4	T5	T5	T5	-	-	
GE® Record Plus® (IEC/UL)	FD 160	FD 160	FE 250	FE 250	FG 400	FG 400	FG 400	FG 630	FG 630	
Siemens® Sentron® (IEC/UL)	VL160X 3VL1 VL160 3VL2	-	VL250 3VL3	VL250 3VL3	VL400 3VL4	VL400 3VL4	VL400 3VL4	-	-	
Moeller® xEnergy® (IEC)	NZM1	-	NZM2	NZM2	NZM3	NZM3	NZM3	NZM3	NZM3	
Cutler Hammer® serie G (UL)	Marco EG	Marco JG	Marco JG	Marco JG	Marco LG	Marco LG	Marco LG	Marco LG	Marco LG	
Legrand® (IEC)	DPX 160 DPX3 160	-	DPX 250 DPX3 250	DPX 250 DPX3 250	DPX 630	DPX 630	DPX 630	DPX 630	DPX 630	
Hager® (IEC)	h3 160	-	h3 250	h3 250	h3 630	h3 630	-	-	-	
Rockwell/Allen Bradley (UL)	Marco G, Marco H	-	Marco I, marco J	Marco I, marco J	Marco I, marco J	-	Marco K	Marco K	-	
Mitsubishi Electric (IEC)	-	NF125 NF160 DSN125 DSN160	NF250 DSN250	NF250 DSN250	-	NF400 DSN400	-	-	-	
OEZ (IEC)	BC160N	-	BD250N BD250S	-	BH630B BH630S	BH630B BH630S	BH630B BH630S	BH630B BH630S	BH630B BH630S	

DIAGRAMAS

ADVERTENCIA

Los productos nVent deben instalarse y usarse solo como se indica en las hojas de instrucciones y materiales de capacitación del producto nVent. Las hojas de instrucciones están disponibles en www.nvent.com y con su representante de atención al cliente de nVent. La instalación incorrecta, el mal uso, la aplicación incorrecta u otras fallas en el seguimiento completo de las instrucciones y advertencias de nVent pueden causar el mal funcionamiento del producto, daños a la propiedad, lesiones corporales graves y la muerte y/o anular la garantía.

Our powerful portfolio of brands:

CADDY ERICO TRACHTE HOFFMAN ILSCO SCHROFF