

nVent ERICO Cu-Bond Runder Leiter

Für Jahrzehnte versorgte nVent ERICO den Markt mit hochwertigen, kupfergebundenen Erdungsstangen. nVent ERICO hat das gleiche Konzept in die Erdungsstangen übernommen und diese zu einem revolutionären neuen Erdungskabelschutzrohr weiterentwickelt. Der Kern des nVent ERICO Cu-Bond Rund-Kabelschutzrohrs ist aus kohlenstoffarmen Stahl für eine verbesserte Flexibilität auf dem Feld. Der Stahlkern ist vernickelt und dann mit einer Kupferbeschichtung galvanisiert. Dieser Galvanisierungsprozess hilft dabei, eine langfristige Molekülbindung zwischen der Kupferschicht und dem Stahl sicherzustellen.

Der Stahlkern des Kabelschutzrohrs bietet diebstahlsichernde Vorteile und sorgt dafür, dass das Kabelschutzrohr mit Handwerkzeug nur schwer geschnitten werden kann. Dank dieses Stahlkerns ist das nVent ERICO Cu-Bond Rund-Kabelschutzrohr eine kostengünstige Alternative zu 100 %-Kupfer-Kabelschutzrohren. Die Kupferoberfläche des Kabelschutzrohrs bietet eine hohe Leitfähigkeit und Korrosionsbeständigkeit.

Die einmaligen Eigenschaften des überirdischen nVent ERICO Cu-Bond Rund-Kabelschutzrohrs machen es ideal für sowohl horizontale als auch vertikale Positionierungen. Das Kabelschutzrohr ist ein ideales Kabelschutzrohr für den Blitzschutz, wenn es in Übereinstimmung mit dem IEC 62305-3 Version 2.0 angewandt wird.

In der Versorgungsbranche kann das Produkt als Verteilungs-Abwärtskanal-Kabelschutzrohr oder im Rahmen eines Potentialausgleichsbausatz für Umspannwerkzäune sowie Erdungssteigleitungen von Ausrüstung zurück ins Netz verwendet werden. In Telekom-Anwendungen kann das Produkt verwendet werden, um eine Ausrüstungserdung mit dem Erdungsnetz zu verbinden, als Steigleitung (Abwärtskanal) für Türme, oder als Erdungskabelschutzrohr für den Netz-Potentialausgleich in Rechenzentren. Es eignet sich auch ideal für Schienenanwendungen, wie streckenseitige Potentialausgleichsleiter und Ableitstromleiter, Erdungsbausätze für streckenseitige Ausrüstung, elektrische Bahnstromversorgung sowie in Umspannwerken, Streckenausrüstungshäuschen und Kommunikationsantennenanlagen.

Unterirdische nVent ERICO Cu-Bond Rund-Kabelschutzrohre sind ideal als Erdungen und Potentialausgleichsleitungen, wo Kupferdiebstahl eine Gefahr darstellt. Sie können

vergrabene Erdungsnetz-Kabelschutzrohre oder Elektroden für drahtlose Telekomtürme sein, in der Energieverteilungsund Übertragungserdung in Versorgungs-Umspannwerken, großflächigen bodenmotierten Solarfarmen, Petrochemischen- und Bergbauinfrastrukturen von industriellen Einrichtungen sowie in Schienenanwendungen verwendet werden. Das Kabelschutzrohr kann als verbindendes Erdungs-Kabelschutzrohr zwischen Windtürmen oder als Erdungsnetz am Standfuß von Windtürmen verwendet werden.

ZERTIFIZIERUNGEN

MERKMALE

Diebstahlgesichert; Stahlkern ist schwer mit Handwerkzeug zu schneiden

Kosteneffektiv; kupfergebunden an einen Stahlkern, um die Menge an Kupfer im Kabel zu minimieren

Überragende Korrosionsbeständigkeit; Anwendungsdauer von typischerweise 30-40 Jahren in den meisten Bodenkonditionen

Kupfergebundene Beschichtung wird beim Biegen des Leiters nicht reißen oder brechen

Hohe Beständigkeit gegenüber Korrosion und Pfad in den Boden mit einem geringen Widerstand

nVent ERICO Cu-Bond Rund-Leiter ist für eine einfache Messung im Feld an jedem Meter (3,28') markiert

Erfüllt die Anforderungen von IEC® 62305-3 Ausgabe 2 und IEC/EN 62561-2 für Blitzschutzanwendungen

nVent ERICO Cu-Bond Rund-Kabelschutzleiter sind UL-zertifiziert gemäß IEC® 62561-2

SPEZIFIKATIONEN

Schichtdicke: 254µm

Material: Kupferummantelter Stahl

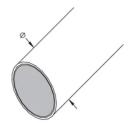
Table 1/2							
Katalognumme r	Entspricht	Durchmesser (Ø)	Länge (L)	Äquivalenz der Schmelzfähigk eit	Leitercode von nVent ERICO Cadweld	Stückgewicht	
CBSC8	EN IEC® 62305-3 Edition 2, EN IEC 62561-2, EN IEC 62561-2	8 mm	100m	25mm²	T1	39 kg	

Katalognumme r	Entspricht	Durchmesser (Ø)	Länge (L)	Äquivalenz der Schmelzfähigk eit		Stückgewicht
CBSC10	EN IEC® 62305-3 Edition 2, EN IEC 62561-2, EN IEC 62561-2	10 mm	100m	35mm²	Т2	62.7 kg
CBSC14	EN IEC® 62305-3 Edition 2, EN IEC 62561-2, EN IEC 62561-2	14.2 mm	100m	70mm²	Т4	125 kg
CBSC18	EN IEC® 62305-3 Edition 2, EN IEC 62561-2, EN IEC 62561-2	17.7 mm	100m	95mm²	Т6	192.2 kg

Table 2/2					
Katalognummer	Zertifizierungsdetails	Zertifizierungen			
CBSC8	EN IEC® 61561-2	UL (IEC)			
CBSC10	EN IEC® 61561-2	UL (IEC)			
CBSC14	EN IEC® 61561-2, UL® 467, CSA C22.1 No. 41	UL (IEC), cUL, UL			
CBSC18	EN IEC® 61561-2, UL® 467, CSA C22.1 No. 41	UL (IEC), cUL, UL			

ZUSÄTZLICHE PRODUKTDETAILS

Beständigkeit pro Einheitenlängenmessung in $m\Omega/m$, CBSC verglichen in Bezug auf AWG/Metrik.


Der IEEE® 837 Standard (Anhang C) bietet ein Verfahren zur Berechnung des Schmelzstroms für Kabelschutzrohre. Diese Grafik ist eine Referenz für Berechnungen für kupfergebundene Stahl-Kabelschutzrohre in Übereinstimmung mit dem IEEE 837 Standard. Diese Information gilt ausschließlich als Referenz.

Leiter - Vergleich der physischen Größe						
Kabelschutzleitergröße	Ungefährer Durchmesser	Querschnitt				
25 mm²	6,76 mm	-				
35 mm²	7,65 mm	-				
CBSC8	8,00 mm	50,27 mm ²				
50 mm²	8,89 mm	-				
CBSC10	10,00 mm	78,52 mm²				
70 mm²	10,69 mm	-				
95 mm²	12,47 mm	-				
CBSC13	13,20 mm	138,07 mm²				
CBSC14	14,20 mm	158,90 mm²				
120 mm²	14,22 mm	-				
CBSC16	15,70 mm	199,84 mm²				
150 mm²	15,75 mm	-				
185 mm²	17,65 mm	-				
CBSC18	17,70 mm	243,27 mm²				

Leitfähigkeitsvergleich						
Teilenummer	AWG (Ω/km)	CBSC Widerstand pro Längenvergleich	mm² (Ω/km)	CBSC Widerstand pro Längenvergleich		
CBSC18	1/0 AWG	118,52 %	50 mm²	110,82 %		
	2 AWG	74,54 %	35 mm²	77,57 %		
CBSC16	2 AWG	102,20 %	35 mm²	106,36 %		
CBSC10	4 AWG	64,27 %	25 mm²	75,97 %		
CBSC14	2 AWG	137,78 %	25 mm²	102,42 %		
	4 AWG	86,65 %	16 mm²	65,55 %		
CBSC13	2 AWG	134,46 %	25 mm²	99,95 %		
	4 AWG	84,56 %	16 mm²	63,97 %		
CBSC10	4 AWG	132,25 %	16 mm²	100,05 %		
	6 AWG	83,17 %	10 mm²	62,53 %		
CBSC8	6 AWG	107,85 %	16 mm²	129,73 %		
	8 AWG	67,83 %	10 mm²	81,08 %		

Schmelzstrom I rms (kA) - IEEE® 837 Anhang C							
Leiterart Verkupfert, Stahlkern, Gewindestangea		CBSC8	CBSC10	CBSC13	CBSC14	CBSC16	CBSC18
Leiterquerschnitt in mm2	А	50.265	78.52	138.07	158.903	199.84	243.27
Anfängliche Leitertemperatur in °C	Та	40	40	40	40	40	40
Zeit des Stromflusses in Sekunden	tc	2	2	2	2	2	2
Maximal zulässige Temperatur in °C	Tm	1084	1084	1084	1084	1084	1084
Wärmekoeffizient des spezifischen Widerstands bei Referenztemperatur Tr	ar	0.00378	0.00378	0.00378	0.00378	0.00378	0.00378
Widerstand des Erdleiters bei Referenztemperatur Tr in m und -cm		8.621	8.621	8.621	8.621	8.621	8.621
1 / a 0 oder (1 / a r) - Tr in ° C	K0	245	245	245	245	245	245
Wärmekapazitätsfaktor in Joule / cm3/ ° C	TCAP	3.846	3.846	3.846	3.846	3.846	3.846
Leitfähigkeit des Materials	%	24.5	20.4	18.8	15.9	16.3	17.7
	ß	84.73	84.73	84.73	84.73	84.73	84.73
Sicherungsstrom-Berechnung	I	4.79	7.48	13.16	15.15	19.05	23.19
Signerungsshorn-berechnung	190 %	4.31	6.74	11.84	13.63	17.14	20.87
	180 %	3.83	5.99	10.53	12.12	15.24	18.55

DIAGRAMME

WARNUNG

nVent-Produkte müssen in Übereinstimmung mit den Produktinformationsblättern und dem Schulungsmaterial von nVent installiert und verwendet werden. Informationsblätter sind verfügbar unter www.nVent.com sowie bei Ihrem nVent-Kundendienstvertreter. Unsachgemäße Installation, Missbrauch, Fehlanwendung oder andere Handlungen im Widerspruch zu den Anweisungen und Warnungen von nVent können zu Fehlfunktionen, Anlagenschäden, schwerer Körperverletzung sowie zum Tod führen und/oder haben die Annullierung der Garantie zur Folge.

 $^{\triangle}$ WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Nordamerika

+1.800.753.9221 Option 1 - Kundendienst Option 2 - Technischer Support

Europa

Niederlande: +31 800-0200135 Frankreich: +33 800 901 793

Europa

Deutschland: 800 1890272 Sonstige Länder: +31 13 5835404

APAC

Shanghai: + 86 21 2412 1618/19 Sydney: +61 2 9751 8500

Unser starkes markenportfolio:

CADDY ERICO HOFFMAN ILSCO SCHROFF TRACHTE

©2025 nVent. Alle Marken und Logos von nVent sind Eigentum der nVent Services GmbH oder ihrer Tochtergesellschaften oder durch sie lizenziert. Alle übrigen Marken sind Eigentum ihrer jeweiligen Inhaber. nVent behält sich das Recht vor, ohne Vorankündigung Änderungen vorzunehmen.

Dieses Dokument ist systemgeneriert.