

nVent ERICO Cu-Bond Round Conductor

Power Utilities

For decades, nVent ERICO has provided the market with high quality copper-bonded ground rods. nVent ERICO has taken that same concept in ground rods and made this into a revolutionary new grounding conductor. The core of the nVent ERICO Cu-Bond Round Conductor is a low carbon steel grade for improved flexibility in the field. The steel core is plated with nickel then electro-plated with a coating of copper. This electro-plating process helps ensure a long-lasting molecular bond between the copper layer and the steel.

The steel core of the conductor provides theft-deterrent benefits, making the conductor difficult to cut with hand tools. With this steel core, nVent ERICO Cu-Bond Round Conductor is a cost-effective alternative to 100% copper conductor. The copper surface of the conductor provides high conductivity and corrosion resistance properties.

Above grade, the unique properties of nVent ERICO Cu-Bond Round Conductor make it ideal for both horizontal and vertical placement. The conductor is well-suited as a lightning protection conductor when applied in accordance with the IEC 62305-3 Edition 2.0 standard.

In the utility industry, the product can be used as a distribution down-lead conductor or as part of a bonding kit for substation fences or equipment ground risers back to the grid. In telecom applications, the product can be used to connect an equipment ground to the ground grid, as a riser (down-lead) for towers, or as a grounding conductor for datacenter mesh bonding. They are also well suited for rail applications such as trackside bonding conductors and stray current conductors, grounding kits for trackside equipment, electrical traction power, as well as in substation, wayside shelters, and communication antenna equipment.

Below grade, nVent ERICO Cu-Bond Round Conductors are ideal as earthing and bonding conductors where copper theft may occur. They may be used as a buried ground grid conductor or electrode for wireless telecom towers, power distribution and transmission grounding in utility substations, large scale ground mount solar farms, petrochemical and mining infrastructure in industrial facilities,

and railway applications. The conductor also can be used as an interconnecting grounding conductor between wind towers or as a grounding grid at the base of a wind tower.

ZERTIFIZIERUNGEN

MERKMALE

Theft-deterrent; steel core is hard to cut with hand tools

Cost-effective; copper bonded to a steel core minimizes the amount of copper in the cable

Superior corrosion resistance; application life of typically 30-40 years in most soil conditions

Copper-bonded coating will not crack or tear when the conductor is bent

High resistance to corrosion and provides a low-resistance path to ground

nVent ERICO Cu-Bond Round Conductor is marked every meter (3.28') for easy measurement in the field

Meets the requirements of IEC® 62305-3 Edition 2 and IEC/EN 62561-2 for lightning protection applications

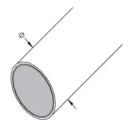
nVent ERICO Cu-Bond Round Conductors are UL certified to IEC® 62561-2

SPEZIFIKATIONEN

Table 1/1						
Katalognummer	Schichtdicke	ke Äquivalenz der Schmelzfähigkeit Leitercode nVent ERIC Cadweld		Stückgewicht	Zertifizierungsdet ails	
CBSC8	254 μm	25 mm²	Т1	39 kg	IEC 62561-2	

ZUSÄTZLICHE PRODUKTDETAILS

Resistance per unit length measurements made in $m\Omega/m$, CBSC compared with respect to AWG/Metric.


The IEEE® 837 standard (Annex C) provides a method of calculating the fusing current for conductors. This chart is a reference of the calculations for copper-bonded steel conductor according to the IEEE 837 standard. This information is for reference only.

Leiter - Vergleich der physischen Größe						
Kabelschutzleitergröße	Ungefährer Durchmesser	Querschnitt				
25 mm²	6,76 mm	-				
35 mm²	7,65 mm	-				
CBSC8	8,00 mm	50,27 mm ²				
50 mm²	8,89 mm	-				
CBSC10	10,00 mm	78,52 mm²				
70 mm²	10,69 mm	-				
95 mm²	12,47 mm	-				
CBSC13	13,20 mm	138,07 mm²				
CBSC14	14,20 mm	158,90 mm²				
120 mm²	14,22 mm	-				
CBSC16	15,70 mm	199,84 mm²				
150 mm²	15,75 mm	-				
185 mm²	17,65 mm	-				
CBSC18	17,70 mm	243,27 mm²				

Leitfähigkeitsvei	gleich				
Teilenummer	AWG (Ω/km)	CBSC Widerstand pro Längenvergleich	ro Längenvergleich $ m mm^2 (\Omega/km)$ CBSC Widerstand pro Länge		
CBSC18	1/0 AWG	118,52 %	50 mm²	110,82 %	
	2 AWG	74,54 %	35 mm²	77,57 %	
CBSC16	2 AWG	102,20 %	35 mm²	106,36 %	
	4 AWG	64,27 %	25 mm²	75,97 %	
CBSC14	2 AWG	137,78 %	25 mm²	102,42 %	
	4 AWG	86,65 %	16 mm²	65,55 %	
CBSC13	2 AWG	134,46 %	25 mm²	99,95 %	
	4 AWG	84,56 %	16 mm²	63,97 %	
CBSC10	4 AWG	132,25 %	16 mm²	100,05 %	
	6 AWG	83,17 %	10 mm²	62,53 %	
CBSC8	6 AWG	107,85 %	16 mm²	129,73 %	
	8 AWG	67,83 %	10 mm²	81,08 %	

Schmelzstrom I rms (kA) - IEEE® 837 Anhang C							
Leiterart Verkupfert, Stahlkern, Gewindestangea		CBSC8	CBSC10	CBSC13	CBSC14	CBSC16	CBSC18
Leiterquerschnitt in mm2	А	50.265	78.52	138.07	158.903	199.84	243.27
Anfängliche Leitertemperatur in °C	Та	40	40	40	40	40	40
Zeit des Stromflusses in Sekunden	tc	2	2	2	2	2	2
Maximal zulässige Temperatur in °C	Tm	1084	1084	1084	1084	1084	1084
Wärmekoeffizient des spezifischen Widerstands bei Referenztemperatur Tr	ar	0.00378	0.00378	0.00378	0.00378	0.00378	0.00378
Widerstand des Erdleiters bei Referenztemperatur Tr in m und -cm	rr	8.621	8.621	8.621	8.621	8.621	8.621
1 / a 0 oder (1 / a r) - Tr in ° C	K0	245	245	245	245	245	245
Wärmekapazitätsfaktor in Joule / cm3/ ° C	TCAP	3.846	3.846	3.846	3.846	3.846	3.846
Leitfähigkeit des Materials	%	24.5	20.4	18.8	15.9	16.3	17.7
	ß	84.73	84.73	84.73	84.73	84.73	84.73
Sigharunggatram Paraghaung	I	4.79	7.48	13.16	15.15	19.05	23.19
Sicherungsstrom-Berechnung	190 %	4.31	6.74	11.84	13.63	17.14	20.87
	180 %	3.83	5.99	10.53	12.12	15.24	18.55

DIAGRAMME

WARNUNG

nVent-Produkte müssen in Übereinstimmung mit den Produktinformationsblättern und dem Schulungsmaterial von nVent installiert und verwendet werden. Informationsblätter sind verfügbar unter www.nVent.com sowie bei Ihrem nVent-Kundendienstvertreter. Unsachgemäße Installation, Missbrauch, Fehlanwendung oder andere Handlungen im Widerspruch zu den Anweisungen und Warnungen von nVent können zu Fehlfunktionen, Anlagenschäden, schwerer Körperverletzung sowie zum Tod führen und/oder haben die Annullierung der Garantie zur Folge.

 $^{\triangle}$ WARNING: This product can expose you to chemicals including lead, which is known to the State of California to cause cancer and birth defects or other reproductive harm. For more information go to www.P65Warnings.ca.gov.

Unser starkes markenportfolio:

CADDY ERICO HOFFMAN ILSCO SCHROFF TRACHTE

Dieses Dokument ist systemgeneriert.